core/iter/traits/collect.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
use super::TrustedLen;
/// Conversion from an [`Iterator`].
///
/// By implementing `FromIterator` for a type, you define how it will be
/// created from an iterator. This is common for types which describe a
/// collection of some kind.
///
/// If you want to create a collection from the contents of an iterator, the
/// [`Iterator::collect()`] method is preferred. However, when you need to
/// specify the container type, [`FromIterator::from_iter()`] can be more
/// readable than using a turbofish (e.g. `::<Vec<_>>()`). See the
/// [`Iterator::collect()`] documentation for more examples of its use.
///
/// See also: [`IntoIterator`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v = Vec::from_iter(five_fives);
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// Using [`Iterator::collect()`] to implicitly use `FromIterator`:
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v: Vec<i32> = five_fives.collect();
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// Using [`FromIterator::from_iter()`] as a more readable alternative to
/// [`Iterator::collect()`]:
///
/// ```
/// use std::collections::VecDeque;
/// let first = (0..10).collect::<VecDeque<i32>>();
/// let second = VecDeque::from_iter(0..10);
///
/// assert_eq!(first, second);
/// ```
///
/// Implementing `FromIterator` for your type:
///
/// ```
/// // A sample collection, that's just a wrapper over Vec<T>
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // Let's give it some methods so we can create one and add things
/// // to it.
/// impl MyCollection {
/// fn new() -> MyCollection {
/// MyCollection(Vec::new())
/// }
///
/// fn add(&mut self, elem: i32) {
/// self.0.push(elem);
/// }
/// }
///
/// // and we'll implement FromIterator
/// impl FromIterator<i32> for MyCollection {
/// fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
/// let mut c = MyCollection::new();
///
/// for i in iter {
/// c.add(i);
/// }
///
/// c
/// }
/// }
///
/// // Now we can make a new iterator...
/// let iter = (0..5).into_iter();
///
/// // ... and make a MyCollection out of it
/// let c = MyCollection::from_iter(iter);
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
///
/// // collect works too!
///
/// let iter = (0..5).into_iter();
/// let c: MyCollection = iter.collect();
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
on(
_Self = "&[{A}]",
message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
all(A = "{integer}", any(_Self = "&[{integral}]",)),
message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
_Self = "[{A}]",
message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
all(A = "{integer}", any(_Self = "[{integral}]",)),
message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
_Self = "[{A}; _]",
message = "an array of type `{Self}` cannot be built directly from an iterator",
label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
),
on(
all(A = "{integer}", any(_Self = "[{integral}; _]",)),
message = "an array of type `{Self}` cannot be built directly from an iterator",
label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
),
message = "a value of type `{Self}` cannot be built from an iterator \
over elements of type `{A}`",
label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`"
)]
#[rustc_diagnostic_item = "FromIterator"]
pub trait FromIterator<A>: Sized {
/// Creates a value from an iterator.
///
/// See the [module-level documentation] for more.
///
/// [module-level documentation]: crate::iter
///
/// # Examples
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v = Vec::from_iter(five_fives);
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_diagnostic_item = "from_iter_fn"]
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self;
}
/// This implementation turns an iterator of tuples into a tuple of types which implement
/// [`Default`] and [`Extend`].
///
/// This is similar to [`Iterator::unzip`], but is also composable with other [`FromIterator`]
/// implementations:
///
/// ```rust
/// # fn main() -> Result<(), core::num::ParseIntError> {
/// let string = "1,2,123,4";
///
/// let (numbers, lengths): (Vec<_>, Vec<_>) = string
/// .split(',')
/// .map(|s| s.parse().map(|n: u32| (n, s.len())))
/// .collect::<Result<_, _>>()?;
///
/// assert_eq!(numbers, [1, 2, 123, 4]);
/// assert_eq!(lengths, [1, 1, 3, 1]);
/// # Ok(()) }
/// ```
#[stable(feature = "from_iterator_for_tuple", since = "1.79.0")]
impl<A, B, AE, BE> FromIterator<(AE, BE)> for (A, B)
where
A: Default + Extend<AE>,
B: Default + Extend<BE>,
{
fn from_iter<I: IntoIterator<Item = (AE, BE)>>(iter: I) -> Self {
let mut res = <(A, B)>::default();
res.extend(iter);
res
}
}
/// Conversion into an [`Iterator`].
///
/// By implementing `IntoIterator` for a type, you define how it will be
/// converted to an iterator. This is common for types which describe a
/// collection of some kind.
///
/// One benefit of implementing `IntoIterator` is that your type will [work
/// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator).
///
/// See also: [`FromIterator`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v = [1, 2, 3];
/// let mut iter = v.into_iter();
///
/// assert_eq!(Some(1), iter.next());
/// assert_eq!(Some(2), iter.next());
/// assert_eq!(Some(3), iter.next());
/// assert_eq!(None, iter.next());
/// ```
/// Implementing `IntoIterator` for your type:
///
/// ```
/// // A sample collection, that's just a wrapper over Vec<T>
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // Let's give it some methods so we can create one and add things
/// // to it.
/// impl MyCollection {
/// fn new() -> MyCollection {
/// MyCollection(Vec::new())
/// }
///
/// fn add(&mut self, elem: i32) {
/// self.0.push(elem);
/// }
/// }
///
/// // and we'll implement IntoIterator
/// impl IntoIterator for MyCollection {
/// type Item = i32;
/// type IntoIter = std::vec::IntoIter<Self::Item>;
///
/// fn into_iter(self) -> Self::IntoIter {
/// self.0.into_iter()
/// }
/// }
///
/// // Now we can make a new collection...
/// let mut c = MyCollection::new();
///
/// // ... add some stuff to it ...
/// c.add(0);
/// c.add(1);
/// c.add(2);
///
/// // ... and then turn it into an Iterator:
/// for (i, n) in c.into_iter().enumerate() {
/// assert_eq!(i as i32, n);
/// }
/// ```
///
/// It is common to use `IntoIterator` as a trait bound. This allows
/// the input collection type to change, so long as it is still an
/// iterator. Additional bounds can be specified by restricting on
/// `Item`:
///
/// ```rust
/// fn collect_as_strings<T>(collection: T) -> Vec<String>
/// where
/// T: IntoIterator,
/// T::Item: std::fmt::Debug,
/// {
/// collection
/// .into_iter()
/// .map(|item| format!("{item:?}"))
/// .collect()
/// }
/// ```
#[rustc_diagnostic_item = "IntoIterator"]
#[rustc_on_unimplemented(
on(
_Self = "core::ops::range::RangeTo<Idx>",
label = "if you meant to iterate until a value, add a starting value",
note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
bounded `Range`: `0..end`"
),
on(
_Self = "core::ops::range::RangeToInclusive<Idx>",
label = "if you meant to iterate until a value (including it), add a starting value",
note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
to have a bounded `RangeInclusive`: `0..=end`"
),
on(
_Self = "[]",
label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
),
on(_Self = "&[]", label = "`{Self}` is not an iterator; try calling `.iter()`"),
on(
_Self = "alloc::vec::Vec<T, A>",
label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
),
on(
_Self = "&str",
label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
),
on(
_Self = "alloc::string::String",
label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
),
on(
_Self = "{integral}",
note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
syntax `start..end` or the inclusive range syntax `start..=end`"
),
on(
_Self = "{float}",
note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
syntax `start..end` or the inclusive range syntax `start..=end`"
),
label = "`{Self}` is not an iterator",
message = "`{Self}` is not an iterator"
)]
#[rustc_skip_during_method_dispatch(array, boxed_slice)]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait IntoIterator {
/// The type of the elements being iterated over.
#[stable(feature = "rust1", since = "1.0.0")]
type Item;
/// Which kind of iterator are we turning this into?
#[stable(feature = "rust1", since = "1.0.0")]
type IntoIter: Iterator<Item = Self::Item>;
/// Creates an iterator from a value.
///
/// See the [module-level documentation] for more.
///
/// [module-level documentation]: crate::iter
///
/// # Examples
///
/// ```
/// let v = [1, 2, 3];
/// let mut iter = v.into_iter();
///
/// assert_eq!(Some(1), iter.next());
/// assert_eq!(Some(2), iter.next());
/// assert_eq!(Some(3), iter.next());
/// assert_eq!(None, iter.next());
/// ```
#[lang = "into_iter"]
#[stable(feature = "rust1", since = "1.0.0")]
fn into_iter(self) -> Self::IntoIter;
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator> IntoIterator for I {
type Item = I::Item;
type IntoIter = I;
#[inline]
fn into_iter(self) -> I {
self
}
}
/// Extend a collection with the contents of an iterator.
///
/// Iterators produce a series of values, and collections can also be thought
/// of as a series of values. The `Extend` trait bridges this gap, allowing you
/// to extend a collection by including the contents of that iterator. When
/// extending a collection with an already existing key, that entry is updated
/// or, in the case of collections that permit multiple entries with equal
/// keys, that entry is inserted.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// // You can extend a String with some chars:
/// let mut message = String::from("The first three letters are: ");
///
/// message.extend(&['a', 'b', 'c']);
///
/// assert_eq!("abc", &message[29..32]);
/// ```
///
/// Implementing `Extend`:
///
/// ```
/// // A sample collection, that's just a wrapper over Vec<T>
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // Let's give it some methods so we can create one and add things
/// // to it.
/// impl MyCollection {
/// fn new() -> MyCollection {
/// MyCollection(Vec::new())
/// }
///
/// fn add(&mut self, elem: i32) {
/// self.0.push(elem);
/// }
/// }
///
/// // since MyCollection has a list of i32s, we implement Extend for i32
/// impl Extend<i32> for MyCollection {
///
/// // This is a bit simpler with the concrete type signature: we can call
/// // extend on anything which can be turned into an Iterator which gives
/// // us i32s. Because we need i32s to put into MyCollection.
/// fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
///
/// // The implementation is very straightforward: loop through the
/// // iterator, and add() each element to ourselves.
/// for elem in iter {
/// self.add(elem);
/// }
/// }
/// }
///
/// let mut c = MyCollection::new();
///
/// c.add(5);
/// c.add(6);
/// c.add(7);
///
/// // let's extend our collection with three more numbers
/// c.extend(vec![1, 2, 3]);
///
/// // we've added these elements onto the end
/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{c:?}"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Extend<A> {
/// Extends a collection with the contents of an iterator.
///
/// As this is the only required method for this trait, the [trait-level] docs
/// contain more details.
///
/// [trait-level]: Extend
///
/// # Examples
///
/// ```
/// // You can extend a String with some chars:
/// let mut message = String::from("abc");
///
/// message.extend(['d', 'e', 'f'].iter());
///
/// assert_eq!("abcdef", &message);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T);
/// Extends a collection with exactly one element.
#[unstable(feature = "extend_one", issue = "72631")]
fn extend_one(&mut self, item: A) {
self.extend(Some(item));
}
/// Reserves capacity in a collection for the given number of additional elements.
///
/// The default implementation does nothing.
#[unstable(feature = "extend_one", issue = "72631")]
fn extend_reserve(&mut self, additional: usize) {
let _ = additional;
}
/// Extends a collection with one element, without checking there is enough capacity for it.
///
/// # Safety
///
/// **For callers:** This must only be called when we know the collection has enough capacity
/// to contain the new item, for example because we previously called `extend_reserve`.
///
/// **For implementors:** For a collection to unsafely rely on this method's safety precondition (that is,
/// invoke UB if they are violated), it must implement `extend_reserve` correctly. In other words,
/// callers may assume that if they `extend_reserve`ed enough space they can call this method.
// This method is for internal usage only. It is only on the trait because of specialization's limitations.
#[unstable(feature = "extend_one_unchecked", issue = "none")]
#[doc(hidden)]
unsafe fn extend_one_unchecked(&mut self, item: A)
where
Self: Sized,
{
self.extend_one(item);
}
}
#[stable(feature = "extend_for_unit", since = "1.28.0")]
impl Extend<()> for () {
fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
iter.into_iter().for_each(drop)
}
fn extend_one(&mut self, _item: ()) {}
}
macro_rules! spec_tuple_impl {
(
(
$ty_name:ident, $var_name:ident, $extend_ty_name: ident,
$trait_name:ident, $default_fn_name:ident, $cnt:tt
),
) => {
spec_tuple_impl!(
$trait_name,
$default_fn_name,
#[doc(fake_variadic)]
#[doc = "This trait is implemented for tuples up to twelve items long. The `impl`s for \
1- and 3- through 12-ary tuples were stabilized after 2-tuples, in \
CURRENT_RUSTC_VERSION."]
=> ($ty_name, $var_name, $extend_ty_name, $cnt),
);
};
(
(
$ty_name:ident, $var_name:ident, $extend_ty_name: ident,
$trait_name:ident, $default_fn_name:ident, $cnt:tt
),
$(
(
$ty_names:ident, $var_names:ident, $extend_ty_names:ident,
$trait_names:ident, $default_fn_names:ident, $cnts:tt
),
)*
) => {
spec_tuple_impl!(
$(
(
$ty_names, $var_names, $extend_ty_names,
$trait_names, $default_fn_names, $cnts
),
)*
);
spec_tuple_impl!(
$trait_name,
$default_fn_name,
#[doc(hidden)]
=> (
$ty_name, $var_name, $extend_ty_name, $cnt
),
$(
(
$ty_names, $var_names, $extend_ty_names, $cnts
),
)*
);
};
(
$trait_name:ident, $default_fn_name:ident, #[$meta:meta]
$(#[$doctext:meta])? => $(
(
$ty_names:ident, $var_names:ident, $extend_ty_names:ident, $cnts:tt
),
)*
) => {
#[$meta]
$(#[$doctext])?
#[stable(feature = "extend_for_tuple", since = "1.56.0")]
impl<$($ty_names,)* $($extend_ty_names,)*> Extend<($($ty_names,)*)> for ($($extend_ty_names,)*)
where
$($extend_ty_names: Extend<$ty_names>,)*
{
/// Allows to `extend` a tuple of collections that also implement `Extend`.
///
/// See also: [`Iterator::unzip`]
///
/// # Examples
/// ```
/// // Example given for a 2-tuple, but 1- through 12-tuples are supported
/// let mut tuple = (vec![0], vec![1]);
/// tuple.extend([(2, 3), (4, 5), (6, 7)]);
/// assert_eq!(tuple.0, [0, 2, 4, 6]);
/// assert_eq!(tuple.1, [1, 3, 5, 7]);
///
/// // also allows for arbitrarily nested tuples as elements
/// let mut nested_tuple = (vec![1], (vec![2], vec![3]));
/// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]);
///
/// let (a, (b, c)) = nested_tuple;
/// assert_eq!(a, [1, 4, 7]);
/// assert_eq!(b, [2, 5, 8]);
/// assert_eq!(c, [3, 6, 9]);
/// ```
fn extend<T: IntoIterator<Item = ($($ty_names,)*)>>(&mut self, into_iter: T) {
let ($($var_names,)*) = self;
let iter = into_iter.into_iter();
$trait_name::extend(iter, $($var_names,)*);
}
fn extend_one(&mut self, item: ($($ty_names,)*)) {
$(self.$cnts.extend_one(item.$cnts);)*
}
fn extend_reserve(&mut self, additional: usize) {
$(self.$cnts.extend_reserve(additional);)*
}
unsafe fn extend_one_unchecked(&mut self, item: ($($ty_names,)*)) {
// SAFETY: Those are our safety preconditions, and we correctly forward `extend_reserve`.
unsafe {
$(self.$cnts.extend_one_unchecked(item.$cnts);)*
}
}
}
trait $trait_name<$($ty_names),*> {
fn extend(self, $($var_names: &mut $ty_names,)*);
}
fn $default_fn_name<$($ty_names,)* $($extend_ty_names,)*>(
iter: impl Iterator<Item = ($($ty_names,)*)>,
$($var_names: &mut $extend_ty_names,)*
) where
$($extend_ty_names: Extend<$ty_names>,)*
{
fn extend<'a, $($ty_names,)*>(
$($var_names: &'a mut impl Extend<$ty_names>,)*
) -> impl FnMut((), ($($ty_names,)*)) + 'a {
#[allow(non_snake_case)]
move |(), ($($extend_ty_names,)*)| {
$($var_names.extend_one($extend_ty_names);)*
}
}
let (lower_bound, _) = iter.size_hint();
if lower_bound > 0 {
$($var_names.extend_reserve(lower_bound);)*
}
iter.fold((), extend($($var_names,)*));
}
impl<$($ty_names,)* $($extend_ty_names,)* Iter> $trait_name<$($extend_ty_names),*> for Iter
where
$($extend_ty_names: Extend<$ty_names>,)*
Iter: Iterator<Item = ($($ty_names,)*)>,
{
default fn extend(self, $($var_names: &mut $extend_ty_names),*) {
$default_fn_name(self, $($var_names),*);
}
}
impl<$($ty_names,)* $($extend_ty_names,)* Iter> $trait_name<$($extend_ty_names),*> for Iter
where
$($extend_ty_names: Extend<$ty_names>,)*
Iter: TrustedLen<Item = ($($ty_names,)*)>,
{
fn extend(self, $($var_names: &mut $extend_ty_names,)*) {
fn extend<'a, $($ty_names,)*>(
$($var_names: &'a mut impl Extend<$ty_names>,)*
) -> impl FnMut((), ($($ty_names,)*)) + 'a {
#[allow(non_snake_case)]
// SAFETY: We reserve enough space for the `size_hint`, and the iterator is `TrustedLen`
// so its `size_hint` is exact.
move |(), ($($extend_ty_names,)*)| unsafe {
$($var_names.extend_one_unchecked($extend_ty_names);)*
}
}
let (lower_bound, upper_bound) = self.size_hint();
if upper_bound.is_none() {
// We cannot reserve more than `usize::MAX` items, and this is likely to go out of memory anyway.
$default_fn_name(self, $($var_names,)*);
return;
}
if lower_bound > 0 {
$($var_names.extend_reserve(lower_bound);)*
}
self.fold((), extend($($var_names,)*));
}
}
};
}
spec_tuple_impl!(
(L, l, EL, TraitL, default_extend_tuple_l, 11),
(K, k, EK, TraitK, default_extend_tuple_k, 10),
(J, j, EJ, TraitJ, default_extend_tuple_j, 9),
(I, i, EI, TraitI, default_extend_tuple_i, 8),
(H, h, EH, TraitH, default_extend_tuple_h, 7),
(G, g, EG, TraitG, default_extend_tuple_g, 6),
(F, f, EF, TraitF, default_extend_tuple_f, 5),
(E, e, EE, TraitE, default_extend_tuple_e, 4),
(D, d, ED, TraitD, default_extend_tuple_d, 3),
(C, c, EC, TraitC, default_extend_tuple_c, 2),
(B, b, EB, TraitB, default_extend_tuple_b, 1),
(A, a, EA, TraitA, default_extend_tuple_a, 0),
);